Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194450

RESUMO

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Assuntos
Gafanhotos , Toxinas Biológicas , Sistemas de Secreção Tipo VII , Animais , Sistemas de Secreção Tipo VII/genética , Citoplasma
2.
Nat Commun ; 14(1): 7808, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016939

RESUMO

Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.


Assuntos
Toxinas Bacterianas , Dermatite , Humanos , Microscopia Crioeletrônica , Toxinas Bacterianas/genética , Membranas , Proteínas de Bactérias/genética , Sequência de Bases , Membrana Celular
3.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38014348

RESUMO

The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of new antibiotics needed to combat these infections remains stagnant. MDR enterococci, which are a common cause of hospital-acquired infections, are emerging as one of the major contributors to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which entails the use of lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of phage resistance and the mechanisms underlying this resistance are unknown. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from vancomycin-resistant Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) and we show that this enzyme is sufficient to restrict the replication of the lytic phage in E. faecalis. We further find that phages can evolve to overcome restriction by acquiring a missense mutation in a novel TIV-RE inhibitor protein encoded by many enterococcal phages. We show that this inhibitor, which we have named anti-restriction-factor A (arfA), directly binds to and inactivates diverse TIV-REs. Overall, our findings significantly advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages can evolve to overcome antiphage defense systems.

4.
J Bacteriol ; 205(6): e0016123, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366633

RESUMO

S.J. Jensen, Z.C. Ruhe, A.F. Williams, D.Q. Nhan, et al. (J Bacteriol 205:e00113-23, 2023, https://doi.org/10.1128/jb.00113-23) demonstrate that a type VI secretion system (T6SS) immunity protein, Tli, functions to both neutralize and activate its cognate toxin, Tle, in Enterobacter cloacae. Their results reveal the surprising finding that Tli function differs, depending on its subcellular localization. Overall, this study enhances our understanding of T6SS immunity proteins, which are commonly viewed as monofunctional toxin-neutralizing antidotes.


Assuntos
Guerra Biológica , Sistemas de Secreção Tipo VI , Antídotos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Enterobacter cloacae
5.
Proc Natl Acad Sci U S A ; 120(14): e2213771120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989297

RESUMO

Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.


Assuntos
Proteínas de Bactérias , Toxinas Biológicas , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Guanosina Pentafosfato , Bactérias/genética , Ligases/genética , Hidrolases/genética , Adenosina , Guanosina Tetrafosfato
6.
Mol Microbiol ; 119(2): 262-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577706

RESUMO

Type VI secretion systems (T6SSs) are cell envelope-spanning protein complexes that Gram-negative bacteria use to inject a diverse arsenal of antibacterial toxins into competitor cells. Recently, Wang et al. reported that the H2-T6SS of Pseudomonas aeruginosa delivers the peptidoglycan recycling amidase, AmpDh3, into the periplasm of recipient cells where it is proposed to act as a peptidoglycan degrading toxin. They further reported that PA0808, the open reading frame downstream of AmpDh3, encodes an immunity protein that localizes to the periplasm where it binds to and inactivates intercellularly delivered AmpDh3, thus protecting against its toxic activity. Given that AmpDh3 has an established role in cell wall homeostasis and that no precedent exists for cytosolic enzymes moonlighting as T6SS effectors, we attempted to replicate these findings. We found that cells lacking PA0808 are not susceptible to bacterial killing by AmpDh3 and that PA0808 and AmpDh3 do not physically interact in vitro or in vivo. Additionally, we found no evidence that AmpDh3 is exported from cells, including by strains with a constitutively active H2-T6SS. Finally, subcellular fractionation experiments and a 1.97 Å crystal structure reveal that PA0808 does not contain a canonical signal peptide or localize to the correct cellular compartment to confer protection against a cell wall targeting toxin. Taken together, these results cast doubt on the assertion that AmpDh3-PA0808 constitutes an H2-T6SS effector-immunity pair.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Sistemas de Secreção Bacterianos/metabolismo
7.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070765

RESUMO

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Assuntos
RNA Catalítico , Sistemas de Secreção Tipo VI , ADP Ribose Transferases/química , Difosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Bactérias/genética , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease P/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo
8.
mBio ; 13(5): e0213722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036513

RESUMO

Bacterial type VIIb secretion systems (T7SSb) are multisubunit integral membrane protein complexes found in Firmicutes that play a role in both bacterial competition and virulence by secreting toxic effector proteins. The majority of characterized T7SSb effectors adopt a polymorphic domain architecture consisting of a conserved N-terminal Leu-X-Gly (LXG) domain and a variable C-terminal toxin domain. Recent work has started to reveal the diversity of toxic activities exhibited by LXG effectors; however, little is known about how these proteins are recruited to the T7SSb apparatus. In this work, we sought to characterize genes encoding domains of unknown function (DUFs) 3130 and 3958, which frequently cooccur with LXG effector-encoding genes. Using coimmunoprecipitation-mass spectrometry analyses, in vitro copurification experiments, and T7SSb secretion assays, we found that representative members of these protein families form heteromeric complexes with their cognate LXG domain and in doing so, function as targeting factors that promote effector export. Additionally, an X-ray crystal structure of a representative DUF3958 protein, combined with predictive modeling of DUF3130 using AlphaFold2, revealed structural similarity between these protein families and the ubiquitous WXG100 family of T7SS effectors. Interestingly, we identified a conserved FxxxD motif within DUF3130 that is reminiscent of the YxxxD/E "export arm" found in mycobacterial T7SSa substrates and mutation of this motif abrogates LXG effector secretion. Overall, our data experimentally link previously uncharacterized bacterial DUFs to type VIIb secretion and reveal a molecular signature required for LXG effector export. IMPORTANCE Type VIIb secretion systems (T7SSb) are protein secretion machines used by an array of Gram-positive bacterial genera, including Staphylococcus, Streptococcus, Bacillus, and Enterococcus. These bacteria use the T7SSb to facilitate interbacterial killing and pathogenesis through the secretion of toxins. Although the modes of toxicity for a number of these toxins have been investigated, the mechanisms by which they are recognized and secreted by T7SSb remains poorly understood. The significance of this work is the discovery of two new protein families, termed Lap1 and Lap2, that directly interact with these toxins and are required for their secretion. Overall, Lap1 and Lap2 represent two widespread families of proteins that function as targeting factors that participate in T7SSb-dependent toxin release from Gram-positive bacteria.


Assuntos
Sistemas de Secreção Bacterianos , Toxinas Biológicas , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana
9.
PLoS Pathog ; 18(1): e1010182, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986192

RESUMO

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise ß-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs 'cocoon' where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal 'plug' domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


Assuntos
Proteínas de Bactérias , Pseudomonas , Sistemas de Secreção Tipo VI
10.
PLoS Pathog ; 17(5): e1009532, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984072

RESUMO

Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Difosfatos/metabolismo , Nucleotídeos/metabolismo , Estresse Fisiológico , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Fosforilação
11.
Mol Microbiol ; 115(6): 1339-1356, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33448498

RESUMO

The guanosine nucleotide-based second messengers ppGpp and pppGpp (collectively: (p)ppGpp) enable adaptation of microorganisms to environmental changes and stress conditions. In contrast, the closely related adenosine nucleotides (p)ppApp are involved in type VI secretion system (T6SS)-mediated killing during bacterial competition. Long RelA-SpoT Homolog (RSH) enzymes regulate synthesis and degradation of (p)ppGpp (and potentially also (p)ppApp) through their synthetase and hydrolase domains, respectively. Small alarmone hydrolases (SAH) that consist of only a hydrolase domain are found in a variety of bacterial species, including the opportunistic human pathogen Pseudomonas aeruginosa. Here, we present the structure and mechanism of P. aeruginosa SAH showing that the enzyme promiscuously hydrolyses (p)ppGpp and (p)ppApp in a strictly manganese-dependent manner. While being dispensable for P. aeruginosa growth or swimming, swarming, and twitching motilities, its enzymatic activity is required for biofilm formation. Moreover, (p)ppApp-degradation by SAH provides protection against the T6SS (p)ppApp synthetase effector Tas1, suggesting that SAH enzymes can also serve as defense proteins during interbacterial competition.


Assuntos
Nucleotídeos de Adenina/metabolismo , Antibiose/fisiologia , Guanosina Pentafosfato/metabolismo , N-Glicosil Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
12.
Mol Microbiol ; 115(3): 478-489, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410158

RESUMO

Type VII secretion systems (T7SSs) are poorly understood protein export apparatuses found in mycobacteria and many species of Gram-positive bacteria. To date, this pathway has predominantly been studied in Mycobacterium tuberculosis, where it has been shown to play an essential role in virulence; however, much less studied is an evolutionarily divergent subfamily of T7SSs referred to as the T7SSb. The T7SSb is found in the major Gram-positive phylum Firmicutes where it was recently shown to target both eukaryotic and prokaryotic cells, suggesting a dual role for this pathway in host-microbe and microbe-microbe interactions. In this review, we compare the current understanding of the molecular architectures and substrate repertoires of the well-studied mycobacterial T7SSa systems to that of recently characterized T7SSb pathways and highlight how these differences may explain the observed biological functions of this understudied protein export machine.


Assuntos
Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Mycobacterium tuberculosis/fisiologia , Mycobacterium tuberculosis/patogenicidade , Sistemas de Secreção Tipo VII/fisiologia , Virulência , Animais , Proteínas de Bactérias/metabolismo , Bactérias Gram-Positivas/ultraestrutura , Interações entre Hospedeiro e Microrganismos , Humanos , Interações Microbianas , Domínios Proteicos , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Translocação de Proteínas/ultraestrutura , Tuberculose/microbiologia , Sistemas de Secreção Tipo VII/ultraestrutura
13.
Structure ; 29(2): 177-185.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33238147

RESUMO

Gram-positive bacteria use type VII secretion systems (T7SSs) to export effector proteins that manipulate the physiology of nearby prokaryotic and eukaryotic cells. Several mycobacterial T7SSs have established roles in virulence. By contrast, the genetically distinct T7SSb pathway found in Firmicutes bacteria more often functions to mediate bacterial competition. A lack of structural information on the T7SSb has limited the understanding of effector export by this protein secretion apparatus. Here, we present the 2.4 Å crystal structure of the extracellular region of the T7SSb subunit EsaA from Streptococcus gallolyticus. Our structure reveals that homodimeric EsaA is an elongated, arrow-shaped protein with a surface-accessible "tip", which in some species of bacteria serves as a receptor for lytic bacteriophages. Because it is the only T7SSb subunit large enough to traverse the peptidoglycan layer of Firmicutes, we propose that EsaA plays a critical role in transporting effectors across the entirety of the Gram-positive cell envelope.


Assuntos
Sistemas de Secreção Tipo VII/química , Domínios Proteicos , Streptococcus intermedius/química , Streptococcus intermedius/metabolismo , Sistemas de Secreção Tipo VII/metabolismo
14.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320089

RESUMO

Type VI secretion systems (T6SSs) deliver antibacterial effector proteins between neighboring bacteria. Many effectors harbor N-terminal transmembrane domains (TMDs) implicated in effector translocation across target cell membranes. However, the distribution of these TMD-containing effectors remains unknown. Here, we discover prePAAR, a conserved motif found in over 6000 putative TMD-containing effectors encoded predominantly by 15 genera of Proteobacteria. Based on differing numbers of TMDs, effectors group into two distinct classes that both require a member of the Eag family of T6SS chaperones for export. Co-crystal structures of class I and class II effector TMD-chaperone complexes from Salmonella Typhimurium and Pseudomonas aeruginosa, respectively, reveals that Eag chaperones mimic transmembrane helical packing to stabilize effector TMDs. In addition to participating in the chaperone-TMD interface, we find that prePAAR residues mediate effector-VgrG spike interactions. Taken together, our findings reveal mechanisms of chaperone-mediated stabilization and secretion of two distinct families of T6SS membrane protein effectors.


Assuntos
Transporte Proteico/fisiologia , Pseudomonas aeruginosa/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Conformação Proteica , Domínios Proteicos
15.
J Biol Chem ; 295(34): 11949-11962, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32601062

RESUMO

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Carboidratos Epimerases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas/fisiologia , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Polissacarídeos Bacterianos/genética , Uridina Difosfato N-Acetilglicosamina/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo
16.
Trends Microbiol ; 28(5): 387-400, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298616

RESUMO

To establish and maintain an ecological niche, bacteria employ a wide range of pathways to inhibit the growth of their microbial competitors. Some of these pathways, such as those that produce antibiotics or bacteriocins, exert toxicity on nearby cells in a cell contact-independent manner. More recently, however, several mechanisms of interbacterial antagonism requiring cell-to-cell contact have been identified. This form of microbial competition is mediated by antibacterial protein toxins whose delivery to target bacteria uses protein secretion apparatuses embedded within the cell envelope of toxin-producing bacteria. In this review, we discuss recent work implicating the bacterial Type I, IV, VI, and VII secretion systems in the export of antibacterial 'effector' proteins that mediate contact-dependent interbacterial antagonism.


Assuntos
Antibiose/fisiologia , Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Bacteriocinas/metabolismo , Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/genética , Toxinas Bacterianas/metabolismo , Parede Celular/metabolismo
17.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31988082

RESUMO

The Pel polysaccharide is a structural component of the extracellular matrix of Pseudomonas aeruginosa biofilms. Recent analyses suggest that Pel production proceeds via a synthase-dependent polysaccharide secretion pathway, which in Gram-negative bacteria is defined by an outer membrane ß-barrel porin, a periplasmic tetratricopeptide repeat-containing scaffold protein, and an inner membrane-embedded synthase. Polymerization is catalyzed by the glycosyltransferase domain of the synthase component of these systems, which is allosterically regulated by cyclic 3',5'-dimeric GMP (c-di-GMP). However, while the outer membrane and periplasmic components of the Pel system have been characterized, the inner membrane complex required for Pel polymerization has yet to be defined. To address this, we examined over 500 pel gene clusters from diverse species of Proteobacteria This analysis identified an invariant set of four syntenic genes, three of which, pelD, pelE, and pelG, are predicted to reside within the inner membrane, while the fourth, pelF, encodes a glycosyltransferase domain. Using a combination of gene deletion analysis, subcellular fractionation, coimmunoprecipitation, and bacterial two-hybrid assays, we provide evidence for the existence of an inner membrane complex of PelD, PelE, and PelG. Furthermore, we show that this complex interacts with PelF in order to facilitate its localization to the inner membrane. Mutations that abolish c-di-GMP binding to the known receptor domain of PelD had no effect on complex formation, suggesting that c-di-GMP binding stimulates Pel production through quaternary structural rearrangements. Together, these data provide the first experimental evidence of an inner membrane complex involved in Pel polysaccharide production.IMPORTANCE The exopolysaccharide Pel plays an important role in bacterial cell-cell interactions, surface adhesion, and protection against certain antibiotics. We identified invariant pelDEFG gene clusters in over 500 diverse proteobacterial species. Using Pseudomonas aeruginosa, we demonstrate that PelD, PelE, PelF, and PelG form a complex at the inner membrane and propose that this complex represents the previously unidentified Pel polysaccharide synthase, which is responsible for Pel polymerization and transport across the cytoplasmic membrane. We show that the formation of this complex is independent of cyclic 3',5'-dimeric GMP (c-di-GMP) binding to the receptor PelD. Collectively, these data establish the widespread Pel apparatus as a member of the synthase-dependent pathway of polysaccharide biosynthetic systems and broaden the architectural diversity of already-established bacterial polysaccharide synthases.


Assuntos
Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
18.
Nature ; 575(7784): 674-678, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695193

RESUMO

Bacteria have evolved sophisticated mechanisms to inhibit the growth of competitors1. One such mechanism involves type VI secretion systems, which bacteria can use to inject antibacterial toxins directly into neighbouring cells. Many of these toxins target the integrity of the cell envelope, but the full range of growth inhibitory mechanisms remains unknown2. Here we identify a type VI secretion effector, Tas1, in the opportunistic pathogen Pseudomonas aeruginosa. The crystal structure of Tas1 shows that it is similar to enzymes that synthesize (p)ppGpp, a broadly conserved signalling molecule in bacteria that modulates cell growth rate, particularly in response to nutritional stress3. However, Tas1 does not synthesize (p)ppGpp; instead, it pyrophosphorylates adenosine nucleotides to produce (p)ppApp at rates of nearly 180,000 molecules per minute. Consequently, the delivery of Tas1 into competitor cells drives rapid accumulation of (p)ppApp, depletion of ATP, and widespread dysregulation of essential metabolic pathways, thereby resulting in target cell death. Our findings reveal a previously undescribed mechanism for interbacterial antagonism and demonstrate a physiological role for the metabolite (p)ppApp in bacteria.


Assuntos
Nucleotídeos de Adenina/biossíntese , Bactérias/efeitos dos fármacos , Bactérias/genética , Toxinas Bacterianas/farmacologia , Toxinas Biológicas/toxicidade , Adenosina/metabolismo , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Parede Celular/efeitos dos fármacos , Cristalização , Escherichia coli/genética , Fosforilação , Pseudomonas aeruginosa , Toxinas Biológicas/genética , Sistemas de Secreção Tipo VI
19.
Cell Rep ; 29(1): 187-201.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577948

RESUMO

The type VI secretion system (T6SS) is crucial in interbacterial competition and is a virulence determinant of many Gram-negative bacteria. Several T6SS effectors are covalently fused to secreted T6SS structural components such as the VgrG spike for delivery into target cells. In Pseudomonas aeruginosa, the VgrG2b effector was previously proposed to mediate bacterial internalization into eukaryotic cells. In this work, we find that the VgrG2b C-terminal domain (VgrG2bC-ter) elicits toxicity in the bacterial periplasm, counteracted by a cognate immunity protein. We resolve the structure of VgrG2bC-ter and confirm it is a member of the zinc-metallopeptidase family of enzymes. We show that this effector causes membrane blebbing at midcell, which suggests a distinct type of T6SS-mediated growth inhibition through interference with cell division, mimicking the impact of ß-lactam antibiotics. Our study introduces a further effector family to the T6SS arsenal and demonstrates that VgrG2b can target both prokaryotic and eukaryotic cells.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Pseudomonas aeruginosa/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Periplasma/efeitos dos fármacos , Periplasma/metabolismo , Periplasma/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo , beta-Lactamas/metabolismo
20.
Nat Microbiol ; 3(10): 1142-1152, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177742

RESUMO

The type VI secretion system (T6SS) primarily functions to mediate antagonistic interactions between contacting bacterial cells, but also mediates interactions with eukaryotic hosts. This molecular machine secretes antibacterial effector proteins by undergoing cycles of extension and contraction; however, how effectors are loaded into the T6SS and subsequently delivered to target bacteria remains poorly understood. Here, using electron cryomicroscopy, we analysed the structures of the Pseudomonas aeruginosa effector Tse6 loaded onto the T6SS spike protein VgrG1 in solution and embedded in lipid nanodiscs. In the absence of membranes, Tse6 stability requires the chaperone EagT6, two dimers of which interact with the hydrophobic transmembrane domains of Tse6. EagT6 is not directly involved in Tse6 delivery but is crucial for its loading onto VgrG1. VgrG1-loaded Tse6 spontaneously enters membranes and its toxin domain translocates across a lipid bilayer, indicating that effector delivery by the T6SS does not require puncturing of the target cell inner membrane by VgrG1. Eag chaperone family members from diverse Proteobacteria are often encoded adjacent to putative toxins with predicted transmembrane domains and we therefore anticipate that our findings will be generalizable to numerous T6SS-exported membrane-associated effectors.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Mutação , Domínios Proteicos , Estabilidade Proteica , Sistemas de Secreção Tipo VI/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...